Estimation of smooth functionals in high-dimensional models: Bootstrap chains and Gaussian approximation

نویسندگان

چکیده

Let X(n) be an observation sampled from a distribution Pθ(n) with unknown parameter θ, θ being vector in Banach space E (most often, high-dimensional of dimension d). We study the problem estimation f(θ) for functional f:E↦R some smoothness s>0 based on X(n)∼Pθ(n). Assuming that there exists estimator θˆn=θˆn(X(n)) such n(θˆ n−θ) is sufficiently close to mean zero Gaussian random E, we construct g:E↦R g(θˆn) asymptotically normal n rate provided s>11−α and d≤nα α∈(0,1). also derive general upper bounds Orlicz norm error rates g(θˆ) depending s, d, sample size accuracy approximation n−θ). In particular, this approach yields efficient estimators log-concave exponential models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models

Finite gaussian mixture models are widely used in statistics thanks to their great flexibility. However, parameter estimation for gaussian mixture models with high dimensionality can be challenging because of the large number of parameters that need to be estimated. In this letter, we propose a penalized likelihood estimator to address this difficulty. The [Formula: see text]-type penalty we im...

متن کامل

High-dimensional Covariance Estimation Based On Gaussian Graphical Models

Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using l1-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many l1-norm pen...

متن کامل

high volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company

در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...

15 صفحه اول

Gaussian approximation of functionals: Malliavin calculus and Stein’s method

Combining Malliavin calculus and Stein’s method has recently lead to a new framework for normal and for chi-square approximation, and for second-order Poincaré inequalities. Applications include functionals of Gaussian random fields as well as functionals of infinite Poisson and Rademacher sequences. Here we present the framework and an extension which leads to invariance principles for multili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Statistics

سال: 2022

ISSN: ['0090-5364', '2168-8966']

DOI: https://doi.org/10.1214/22-aos2197